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Emotionally Expressive 
Talking Head Applications

• e-Learning
– foreign language learning

• Computer Games
– life like characters

• 3D agent-based assistance
– advanced human-computer relationship

• Information services
– call center applications



Project Goal
• Facial expressions and 

emotions of a person 
are related.

• We aim to build  a 
speaker-independent 
speech emotion 
recognition system to 
drive fully  automatic 
facial expression 
animation.

Fig. 1. Example expressions: fear, happiness, anger and sadness
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Emotional Speech Dataset

• Berlin Emotional Speech Dataset (EMO-DB)

– In German
– 5 female, 5 male speakers
– Totally 535 utterances 
– Emotions: fear, disgust, happiness, boredom, neutral, 

sadness, anger
– 16 kHz, 16 bit Mono Windows PCM



Feature Extraction

• Prosody-related 
features
– Short-time features 

like pitch, 
1st derivative of pitch
and intensity

• Spectral features
– Mel frequency cepstral 

coefficients (MFCCs) 
with their delta and 
acceleration (1st and 
2nd derivative) 
components



Prosody related features
• We use the autocorrelation method to extract 

prosody related features

• High values of pitch appear to be correlated with 
happiness, anger and fear whereas, sadness and 
boredom seem to be associated with low pitch values

• Speaker normalization

• Delta and acceleration coefficients are also used



Spectral Features
• MFCCs are obtained by processing speech 

recordings using 25 ms Hamming windows with 
overlapping frames of 10 ms

• Each spectral feature vector includes 12 cepstral
coefficients and the energy term

• Delta and acceleration coefficients are also used



Emotion Classifier

• Gaussian Mixture Model (GMM)
– Probability density function of the spectral feature 

space is modeled with a GMM for each emotion.

• Hidden Markov Model (HMM)
– Temporal patterns of the emotion dependent 

prosody contours are modeled with an HMM 
based classifier.



GMM

• We use 25 mixtures with diagonal covariance 
matrices for all GMM based density functions. 

• All the features that belong to a certain emotion are 
used to train GMM density with iterative expectation 
maximization technique.

• In the recognition phase, posterior probability of the 
features of a given speech utterance is maximized 
over all emotion GMM densities. 



Speech Features modeled with 
GMMs

• fP       Pitch – intensity 

• fC      MFCCs

• fCΔ MFCCs with delta and acceleration     
coefficients

• fPC    Pitch – intensity and MFCCs

• fPCΔ Pitch – intensity and MFCCs with delta 
and acceleration coefficients



HMM
• Pitch, 1st derivative of pitch, 

and intensity

• 2 branched HMM structure 
where each branch has 5 
left-to-right emitting states 
with a possible loop back

• Emotion-dependent and 
emotion-independent 
characteristics are modeled

Fig. 2. 2-branched HMM structure, each branch with 
five left-to-right emitting states



Decision Fusion of Classifiers (1)

• Weighted summation based decision fusion 
technique is used to combine GMM and HMM based 
classifiers.

• The GMM and HMM based classifiers output 
likelihood scores are sigmoid normalized and 
mapped into [0, 1] range.

• After normalization, we have two likelihood score sets 
for GMM and HMM based classifiers for each 
emotion and utterance.



Decision Fusion of Classifiers (2)

• Let us denote log-likelihoods of GMM and HMM 
based classifiers respectively as

ρG (λgn),  for n =1, 2, …, N              
ρH (λhn),  for n =1, 2, …, N

λgn : nth emotion GMM
λhn : nth emotion HMM
N : number of emotions



Decision Fusion of Classifiers (3)

• Assuming the two classifiers
are statistically independent

ρ(λn) = αρG (λgn) + (1-α) ρH (λhn)

• Maximum recognition rate 
after the decision fusion is 
83.80 % for α value 0.92.

Fig. 3. Comparison of  fCΔGMM and fC∆ GMM fused 
with prosody HMM recognition results for varying weight 
values of  GMM in the decision process.



Experimental Results
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Fig. 4. 5 fold SCV emotion recognition rates for prosody related and spectral speech 
features classified with HMMs, GMMs and decision fusion of these two classifiers.



Expression Synthesis

• EMO-DB has 2.7 s of 
average speech 
recording duration.

• Observing the plot on 
the left we select 
decision window size as 
2 s.

Fig. 5. Recognition rate changes of fC∆ using GMM 
classifier for varying decision window sizes



Animation Player

• Linear interpolation

• 100 ms transition duration between consecutive 
expressions and 1.8 s saturation duration

0.1 s 0.1 s0.1 s 1.8 s 1.8 s

Fig. 6. Linear interpolation of consecutive expressions



Conclusions
• Prosody related and spectral features are all modeled 

with GMMs and HMMs.

• Spectral features perform better than prosody related 
features since they span the whole spectrum.

• Decision fusion of the classifiers increase the 
recognition results up to 83.80 %.
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